首页 资讯 应用 高压 设计 行业 低压 电路图 关于

RFID

旗下栏目: 电力电子 通信网络 RFID LED

基于实时信息的飞机装配技术状态管理方法研究

RFID | 发布时间:2017-07-19 | 人气: | #评论# |本文关键字:飞机,RFID,制造
摘要:目前,装配制造企业尤其是飞机装配企业生产过程中最大的难题就是技术状态的清理,飞机装配过程是典型的复杂系统实现过程,随着飞机并行研制过程的不断深入,以及新技术新工艺

目前,装配制造企业尤其是飞机装配企业生产过程中最大的难题就是技术状态的清理,飞机装配过程是典型的复杂系统实现过程,随着飞机并行研制过程的不断深入,以及新技术新工艺的发展,技术状态清理工作量必将越来越大,飞机装配过程技术状态管理就显得尤为重要。

  对于飞机技术状态管理的研究大多聚焦于飞机设计时的产品结构配置、变型设计、设计版本管理,以及装配前的工艺规划、虚拟装配、工艺版本管理等,装配过程中的实时信息采集与管理问题研究较少。飞机装配技术状态的管理主要依赖于生产过程中手工记录的信息,突出的3个问题是:(1)管理人员无法在第一时间获取装配过程中发生的设备故障信息以及由人员变更引起的质量问题,难以迅速处理问题和及时调度车间资源;(2)物料与装配任务缺乏有效的匹配标识,工人只能凭借主观判断来完成装配过程,容易造成错装;(3)装配过程组织混乱,存在多工位人员的“并行操作”,缺乏行之有效的装配流程和规范。因此针对飞机制造过程中的多样性与复杂性,建立一种飞机装配技术状态数据网络模型,利用射频识别技术来配置数据模型,并通过数据信息来分析装配过程,服务生产管理,以此来实现飞机装配过程技术状态管理。

  1 飞机装配技术状态管理

  1.1 飞机装配技术状态元素网络模型

  飞机装配过程由若干装配段位(如前、中、后机身装配段位)组成,每个段位又可以细分为若干装配工位。通常情况下每个装配工位的具体执行内容由装配大纲(AO)制定,AO中的装配工序细化装配内容,装配工序结束后需要进行重要工序的检验。飞机装配技术状态的主要元素可归纳为:装配段位、装配工位、AO、装配工序、检验。建立飞机装配技术状态主要元素之间的模型关系网络,如图1所示,将装配段位、装配工位、AO、装配工序、检验定义为模型的5类重要的元素,分别用符号A、S、AO、P、E标识,5类元素可以在XOY平面内组成一个完整的装配技术状态模型。一般情况下某型飞机至少有2种或2种以上的型号,F1和F2分别表示飞机的2种改版机型,每种机型都应该有3个以上的装配段位,不同型号之间会存在重复的装配段位,如F1和F2共用的装配段位为A11,A21,A41。同种元素不同类型用数字予以区别,同种类型的不同版本用上标进行区别,例如A1和42分别表示2个不同的装配段位,而A31和A32表示同一装配段位的不同版本。装配过程中还存在着装配工位的共用现象,如装配工位Sm1就是由不同装配段位的机型所共用。这种情况在实际的装配过程中较为常见,需要考虑在模型模板中,达到真正意义上的飞机装配技术状态的管理。

机型装配技术状态元素网络模型

图1 机型装配技术状态元素网络模型

  1.2 飞机装配技术状态数据网络模型

  飞机装配技术状态的管理是一个动态过程,为了描述这种动态过程需要在XOY平面基础上增加时间轴来实时记录飞机装配技术状态,如图2所示。

飞机装配技术状态数据网络模型

图2 飞机装配技术状态数据网络模型

  T1时刻,参数化的飞机装配技术状态数据模型可以用T1来表示,并在Z=T1平面上进行映射。同样的,在后续装配过程中的T2,T3,T4时刻,需对装配技术状态模型进行参数化处理,形成的数据模型分别在垂直于时间轴的Z=T2、Z=T3、Z=T4平面上进行映射。通过增加时间轴的方式完成对飞机装配技术状态模型数据信息的实时化处理,形成了真正意义上的基于实时信息的飞机装配技术状态管理模型网络。

  2 飞机装配过程技术状态数学模型

  2.1 飞机装配技术状态数学模型定义

  通过对飞机装配过程中各个工位的监控,可以获知任意工位装配过程中的实时技术状态,并能以此进一步实现飞机装配过程技术状态的监控、对比和回溯。装配生产的过程中,技术状态的管理是随着加工人员、时间以及工位等因素实时变化的。以装配车间具体工位为监控节点,形成装配车间的监控网络,在监控过程中重点关注以下几个要素:装配零件、工人、时间、工序内容和工序状态,它们是装配工位技术状态的基本要素。其中装配零件用D来指代,工人用R来指代,工序内容与工序状态可由工位信息W来提供,根据以上信息将工位M技术状态组成定义如下:

工位M技术状态组成

  式中:D={di|i=1,2,3,…,m;},代表所有装配零件的集合,di的值为零件号;R={rj|j=1,2,3,…,n;},代表所有工人的集合,rj为工人的工号;W={Wk|k=1,2,3,…,z;},代表车间中所有的工位的集合,wk为各个工位的代码,例如飞机机翼段的工位,包括前缘襟翼Ⅰ段装配工位、前缘襟翼Ⅱ段装配工位、机翼外架总装工位、机翼精加工工位等;Q ={ql|l=1,2,3;},代表各个零件在各个工位所处的装配状态,包括待装配、装配中、已装配;T={tdi[wk,ql,rj]},代表装配零件的实时状态,即装配零件在当前状态下的工位信息、工序状态以及操作人员信息,将以上3个信息列为在某一时刻的状态集,那么每一组相互关联的(di,rj,wk,ql,t)就构成了一个唯一的装配零件实时状态。把di,rj,wk,ql,t定义为装配系统技术状态(Technology State of Assembly System)的5个基本属性:

基本属性

  式中:DT={dtn},代表某工位上装配零件种类的集合。△T={△tdtn[wkql,wk+xql+y]},表示dtn种类的零件从(工位wk,工序状态ql)到(工位wk+x,工序状态ql+y)经历的额定时间集合。A={A[tdtn]},代表所有零件装配工艺的矩阵集合,令A'={A'[di]},表示所有零件实时装配的进度状态集合,A[d*]与A'[di]同为k行l列的矩阵,行代表工位wk,列表示工序状态ql,其中α[dtn]k,l=1,表示dtn种类的零件必须经过工位Wk并处于工序状态ql,α[dtn]k,l=0,代表此种类零件无需经过此工位进行此道工序的操作;α'[di]k,l=1,表示零件di已经过工位wk且处于工序状态ql,α'[di]k,l=0,表示该零件并未经过此工位。

  2.2 飞机装配技术状态数学模型计算

  零件装配过程工时定义为从涉及零件装配的工序开始到最后一道工序截止,可得零件完成全部装配过程工时:

零件完成全部装配过程工时

  式中△t是零件di从(工位wk,工序状态ql)到(工位wk+x,工序状态ql+y)所经过的时间。

  零件装配进度定义为当前装配量与总装配量之间的百分比:

零件装配进度定义为当前装配量与总装配量之间的百分比

  当△A[di]=0,表示零件di已经完成了装配流程,并记f(di)=1;当△A[di]≠0时,表示零件未完成装配,记f(di)=0,此时零件已完成装配量的百分比为η:

零件已完成装配量的百分比

  装配执行过程中,若α[dtn]k,l=1,α'[dtn]k,l=0,那么该工位工序内容并未正常执行,对应工位集合W={wk|k=1,2,3,…,z;}及工人集合R={rj|j=1,2,3,…,n;}中有异常情况出现。

  当rj=1、wk=0时,需要对相应工位设备进行故障检测,重新安排生产任务,下达调度计划。当wk=1、rj=0时,表明对应工位的操作人员未按指定工艺要求进行生产,需要调度人员确认生产现场状况,合理调度安排生产计划。

  3 飞机装配技术状态实例分析

 

责任编辑:电气自动化网

热门文章

首页 | 资讯 | 应用 | 高压 | 设计 | 行业 | 低压 | 电路图 | 关于

Copyright 2017-2018 电气自动化网 版权所有 辽ICP备17010593号-1

电脑版 | 移动版

Ctrl+D 将本页面保存为书签,全面了解最新资讯,方便快捷。