首页 资讯 应用 高压 设计 行业 低压 电路图 关于

电力电子

旗下栏目: 电力电子 通信网络 RFID LED

MOSFET元器件特性

电力电子 | 发布时间:2018-05-22 | 人气: | #评论# | 本文关键字:MOSFET,特性,开关电源,元器件,LLC,LCC
摘要:MOSFET是开关电源中的重要元器件,也是比较难掌握的元器件之一,尤其在LLC,LCC软开关的设计中,对于MOSFET元器件本身的理解尤其重要,理解透彻了,也就应用自如了。本文会从理论上对MOSF

MOSFET是开关电源中的重要元器件,也是比较难掌握的元器件之一,尤其在LLC,LCC软开关的设计中,对于MOSFET元器件本身的理解尤其重要,理解透彻了,也就应用自如了。本文会从理论上对MOSFET的重要设计参数进行介绍。

1. 功率损耗

MOSFET的功率损耗主要受限于MOSFET的结温,基本原则就是任何情况下,结温不能超过规格书里定义的最高温度。而结温是由环境温度和MOSFET自身的功耗决定的。下图是典型的功率损耗与MOSFET表面结温(Case temp.)的曲线图。

功率损耗与MOSFET表面结温(Case temp.)的曲线图

一般MOSFET的规格书里面会定义两个功率损耗参数,一个是归算到芯片表面的功率损耗,另一个是归算到环境温度的功率损耗。这两个参数可以通过如下两个公式获得,重点强调一点,与功耗温度曲线密切相关的重要参数热阻,是材料和尺寸或者表面积的函数。随着结温的升高,允许的功耗会随之降低。

根据最大结温和热阻,可以推算出MOSFET可以允许的最大功耗。

MOSFET可以允许的最大功耗

归算到环境温度的热阻是布板,散热片和散热面积的函数,如果散热条件良好,可以极大提升MOSFET的功耗水平。

2. 漏极(沟道)电流

规格书中会定义最大持续漏极电流和最大脉冲电流,如下图。一般规格书中最大脉冲电流会定义在最大持续电流的4倍,并且随着脉冲宽度的增加,最大脉冲电流会随之减少,主要原因就是MOSFET的温度特性,这一点可以从之后讲到的安全工作区图形中清楚看到。

理想情况下,理论上最大持续电流只依赖于最大功耗,此时最大持续电流可以通过功率公式(P=I^2 R)推算出。如下式:

然而实际中,其他条件会限制理论上计算出来的最大持续电流,比如铜线直径,芯片工艺与组装水平等。比如上式中计算的最大持续电流为169A,但是考虑到其他约束条件,实际只能达到100A。所以制造商的工艺水平某种程度上决定了设计余量,知名厂商往往强项就在于此。下图就是实际的持续电流与结温的关系曲线图,脉冲电流是由安全工作区决定的。

3. 安全工作区

安全工作区可以说是MOSFET最重要的数据,也是设计者最重要的设计参考。下图是典型的安全工作区图形。

MOSFET安全工作区图形

由上图可知,MOSFET的SOA实际上有5条限制线,这5条限制线决定了SOA的区域。细节如下图:

1)Rdson限制线

Rdson限制线是Vds和Ids的函数,这天直线的斜率就是MOSFET的最大Rdson(Vgs=10V, Tj=150℃),因此Rdson限制线可以由下式给出:

由上式可知:

因为随着 Vgs降低Rdson会增加,因此对于较低的Vgs,Rdson限制线会向下移动。

因为Rdson会随着Tj的降低而增大,因此对于Tj小于150C的情况,Rdson会向上移动。

2)封装限制线

当顺着Rdson向着更大电压和电流的方向移动就会到达封装限制线。不同封装的MOSFET和工艺水平决定了这条线的水平。封装限制线并不随着温度变化而变化。

3)最大功率限制线

封装限制线之后就是最大功率限制线,这条线的规则就是MOSFET功耗产生的温升加上25C不能超过MOSFET的最大结温,比如150C。MOSFET的散热条件对这条限制线影响很大,因此与温度相关的变量,比如热阻,Tc和功耗也就限制了应用。

可以得出:

Ids受限于最大结温Tj,最大允许温升是由Tj和Tc之差决定的。

Ids受限于热阻ZthJC的影响,脉冲情况下的ZthJC是由脉冲长度与占空比决定的。

责任编辑:MOSFET
首页 | 电气资讯 | 应用技术 | 高压电器 | 电气设计 | 行业应用 | 低压电器 | 电路图 | 关于我们 | 版权声明

Copyright 2017-2018 电气自动化网 版权所有 辽ICP备17010593号-1

电脑版 | 移动版 原创声明:本站大部分内容为原创,转载请注明电气自动化网转载;部分内容来源网络,如侵犯您的权益请发送邮件到[email protected]联系我们删除。