首页 资讯 应用 高压 设计 行业 低压 电路图 关于

电力电子

旗下栏目: 电力电子 通信网络 RFID LED/LCD

半导体冷却工作原理

电力电子 | 发布时间:2019-03-06 | 人气: | #评论# | 本文关键字:半导体,二极管,P型半导体,N型半导体
摘要:致冷器件是由半导体所组成的一种冷却装置,随着近代的半导体发展才有实际的应用,也就是致冷器的发明。其工作原理是由直流电源提供电子流所需的能量,通上电源后,电子负极(-)出发,

致冷器件是由半导体所组成的一种冷却装置,随着近代的半导体发展才有实际的应用,也就是致冷器的发明。其工作原理是由直流电源提供电子流所需的能量,通上电源后,电子负极(-)出发,首先经过P型半导体,于此吸热量,到了N型半导体,又将热量放出,每经过一个NP模块,就有热量由一边被送到令外一边造成温差而形成冷热端。冷热端分别由两片陶瓷片所构成,冷端要接热源,也就是欲冷却之。在以往致冷器是运用在CPU的,是利用冷端面来冷却CPU,而热端面散出的热量则必需靠风扇来排出。致冷器也应用于做成车用冷/热保温箱,冷的方面可以冷饮机,热的方面可以保温热的东西。
半导体致冷器的历史
制冷片是由半导体所组成的一种冷却装置,于1960左右才出现,然而其理论基础Peltier effect可追溯到19世纪。下图(1)是由X及Y两种不同的金属导线所组成的封闭线路,通上电源之后,A点的热量被移到B点,导致A点温度降低,B点温度升高,这就是著名的Peltier effect。这现 象最早是在1821年,由一位德国科学家Thomas Seeback首先发现,不过他当时做了错误的推论,并没有领悟到背后真正的科学原理。到了1834年,一位法国表匠,同时也是兼职研究这现象的物理学家JeaNPeltier,才发现背后真正的原因,这个现象直到近代随着半导体的发展才有了实际的应用,也就是“致冷器”的发明。
一、
因半导体致冷片薄而轻巧,体积很小,不占空间,并可以携带,做成车用电冷/热保温箱,放置车上,不占空间,并可变成冰箱及保温箱,夏 
天可以摆上几瓶饮料,就可以便冰饮,在冬天就可以变成保温箱。
致冷器件的作用原理
             图(1) 致冷器件的作用原理
致冷器的名称相当多,如 Peltier cooler、thermoelectric、thermoelectric cooler (简称 T.E 或 T.E.C)、thermoelectric module,另外又称为热帮浦 (heat pump)。

二、致冷器件的结构与原理
下图(2)是一个制冷器的典型结构。

致冷器的典型结构
                    图(2) 致冷器的典型结构
致冷器是由许多N型和P型半导体之颗粒互相排列而成,而NP之间以一般的导体相连接而成一完整线路,通常是铜、铝或其它金属导体,最后由两片陶瓷片像夹心饼干一样夹起来,陶瓷片必须绝缘且导热良好,外观如下图(3)所示,看起来像三明治。
半导体制冷工作原理
     图(3) 致冷器的外观
以下详细说明N型和P型半导体的原理:

三、N型半导体 
(1) 如果在锗或硅中均匀掺杂五价元素,由于价电子间会互相结合而形成共价键,故每个五价元素会与邻近四价之锗或硅原子互成一共价键,而多出一个电子来,如图(4)所示,这就称为N型半导体。(N表示negative,电子带负电) 。

N型半导体
               图(4) N型半导体
(2) 由于加入五甲元素后会添加电子,故五价元素又被称为施体原子。
(3) 加入五价元素而产生之自由电子,在N型半导体里又占大多数,故称为多数载体(majority carriers) 。由温度的引响所产生之电子─电洞对是少数,所以N型半导体中称电洞为少数载体(minority carriers) 。

四、P型半导体

(1) 如果在锗或硅中均匀掺杂三价元素,由于价电子间会互相结合而形成共价键,故每个三价元素会与邻近四价之锗或硅原子互成一共价键,而多缺少一个电子,在原子中造成一个空缺来,这个空缺我们称为电洞,如图(5)B 所示,加入三价元素之半导体就称为P型半导体。(P表示positive,电洞视为正电荷) 。

图(5) P型半导体
(2) 由于加入三价元素后会造成一个空缺,故三价元素又被称为受体原子。
(3)加入三价元素而产生之电洞,在P型半导体中是多数载体。受热使共价键破坏而产生的电子电洞为少数,故P型半导体中称电子为少数载体。
(4) 通常我们都用正电荷代表电洞。但是固体中的原子不能移动,所以电洞(一个空位)也应该是不能移动的。
五、P-N结合
(1) 当P型半导体或N型半导体被单独使用时,由于其导电力比铜、银等不良,但却比绝缘体的导电力良好,故实际上,就等于一个电阻器一样,如下图(6)所示。

        图(6) P-N结合
(2) 但若将数片P或N型半导体加以适当的组合,则会产生各种不同的电气特性,而使半导体零件的功能更多彩多姿。今天我们要先看看把一块P型半导体与N型半导体结合起来的情况。
(3) 当一块P型半导体与N型半导体结合起来时,如下图所示,由于P型半导体中有很多的电洞,而N型半导体中有许多电子,所以当P-N结合起来时,结合面附近的电子会填入电洞中,P-N结合起来时,如下图(7)(a)所示。


                        图(7)

或许你会以为N型半导体中的电子会不断的透过接合面与电洞结合,直到所有的电子或电洞消失为止。事实上,靠近接合面的N型半导体失去了电子后就变成正离子,P型半导体失去了一些电洞后就变成负离子,如上图(7)(b)所示。此时正离子会排斥电洞,负离子会排斥电子,因而阻止了电子、电洞的继续结合,而产生平衡之状态。
(4) 在P-N接合面(P-Njunction)附近没有载体(电子或电洞),只有离子之区域称为空乏区(depletioNregion) 。
(5) 空乏区的离子所产生的阻止电子、电洞通过接合面的力量,称为障碍电位(potential barrier) 。障碍电位视半导体的掺杂程度而定,一般而言,Ge 的P-N接合面约为0.2~0.3V,而Si 的P-N接合面约为0.6~0.7V。

责任编辑:半导体制冷

热门文章

首页 | 电气资讯 | 应用技术 | 高压电器 | 电气设计 | 行业应用 | 低压电器 | 电路图 | 关于我们 | 版权声明

Copyright 2017-2018 电气自动化网 版权所有 辽ICP备17010593号-1

电脑版 | 移动版 原创声明:本站大部分内容为原创,转载请注明电气自动化网转载;部分内容来源网络,如侵犯您的权益请发送邮件到[email protected]联系我们删除。